Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.146
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Células Endoteliais/efeitos dos fármacos
2.
Circ Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.

3.
Exp Brain Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563979

RESUMO

Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.

4.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38559112

RESUMO

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.

5.
Pulse (Basel) ; 12(1): 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572498

RESUMO

Background: Exercise training elicits indubitable positive adaptation in microcirculation in health and disease populations. An inclusive overview of the current knowledge regarding the effects of exercise on microvascular function consolidates an in-depth understanding of microvasculature. Summary: The main physiological function of microvasculature is to maintain optimal blood flow regulation to supply oxygen and nutrition during elevated physical demands in the cardiovascular system. There are several cellular and molecular alterations in resistance vessels in response to exercise intervention, an increase in nitric oxide-mediated vasodilation through the regulation of oxidative stress, inflammatory response, and ion channels in endothelial cells, thus increasing myogenic tone via voltage-gated Ca2+ channels in smooth muscle cells. Key Messages: In the review, we postulate that exercise should be considered a medicine for people with diverse diseases through a comprehensive understanding of the cellular and molecular underlying mechanisms in microcirculation through exercise training.

6.
J Clin Invest ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573766

RESUMO

BACKGROUND: The molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS). METHODS: In a single-center prospective cohort of intubated pediatric ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage associated molecular patterns were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models. RESULTS: In 279 subjects (64 [23%] non-survivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in non-survivors. Survivors and non-survivors showed different biomarker trajectories. IL-1α, sTNFR1, ANG2, and SPD increased in non-survivors, while DAMPs remained persistently elevated. ANG2 and P3NP were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality. CONCLUSIONS: Pediatric ARDS survivors and non-survivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in non-survivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.

7.
Biomed Pharmacother ; 174: 116576, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593707

RESUMO

PURPOSE: We aim to establish an LPS-induced human aortic endothelial cells (HAECs) inflammatory injury model and explore the optimal conditions for inducing its injury. We expect to provide modeling references for the related experiments of vascular inflammatory diseases. METHODS: HAECs were cultured in vitro and treated with different concentrations of lipopolysaccharide (LPS) (0.1, 1, 10, 50, 100 µg/mL) for 6, 12, and 24 h to establish the HAECs inflammatory injury model. The cell viability was determined by CCK-8 assay; the expression levels of inflammatory cytokines in the cells were detected by RT-PCR;the apoptosis rate of the cells was detected by flow cytometry. RESULTS: ① Within 24 h of LPS treatment, the cell viability of the 0.1 and 1 µg/mL groups showed an overall increasing trend with time, while the cell viability of the 10, 50, and 100 µg/mL groups increased first and then decreased with time, and the cell viability of 50 and 100 µg/mL groups was significantly lower than the normal control group at 24 h (P<0.01). ② RT-PCR results showed that after 50 and 100 µg/mL LPS for 24 h, the inflammatory cytokines all showed an apparent upward trend compared with the normal control group (P<0.05), which was more significant in the 100 µg/mL group. ③ After 100 µg/mL LPS for 24 h, the apoptotic necrosis rate of HAECs was higher than the normal control group (P<0.01). CONCLUSIONS: This experiment successfully established a HAECs injury model, indicating that the optimal conditions for inducing injury are an LPS concentration of 100 µg/mL and a treatment time of 24 h.

8.
Stem Cell Rev Rep ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598065

RESUMO

Our previous studies have highlighted the pivotal role of gastric cancer mesenchymal stem cells (GCMSCs) in tumor initiation, progression, and metastasis. In parallel, it is well-documented that endothelial cells (ECs) undergo functional alterations in response to challenging tumor microenvironment. This study aims to elucidate whether functional changes in ECs might be induced by GCMSCs and thus influence cancer progression. Cell proliferation was assessed through CCK-8 and colony formation assays, while cell migration and invasion capabilities were evaluated by wound-healing and Transwell assays. Immunohistochemistry was employed to examine protein distribution and expression levels. Additionally, quantitative analysis of protein and mRNA expression was carried out through Western blotting and qRT-PCR respectively, with gene knockdown achieved using siRNA. Our findings revealed that GCMSCs effectively stimulate cell proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), both in vitro and in vivo. GCMSCs promote the migration and invasion of gastric cancer cells by inducing the expression of Slit2 in HUVECs. Notably, the inhibition of phosphorylated AKT partially mitigates the aforementioned effects. In conclusion, GCMSCs may exert regulatory control over Slit2 expression in ECs via the AKT signaling pathway, thereby inducing functional changes in ECs that promote tumor progression.

9.
EMBO Mol Med ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589650

RESUMO

Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/ß-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/ß-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/ß-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.

10.
Eur J Clin Invest ; : e14212, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591651

RESUMO

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.

11.
Circ Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557119

RESUMO

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3, which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.

12.
Macromol Biosci ; : e2400071, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569562

RESUMO

Engineered nanomaterials are promising in biomedical application. However, insufficient understanding of their biocompatibility at the cellular and organic levels prevents their widely biomedical applications. Metal-organic frameworks (MOFs) have attracted increasing attention in recent years. In this work, zeolitic imidazolate framework-8 (ZIF-8) and polydopamine (PDA)-modified ZIF-8 are chosen as model nanomaterials due to its emergent role in nanomedicine. In vitro, the results demonstrate that the PDA coating greatly alleviates the cytotoxicity of ZIF-8 to RAW264.7, LO2, and HST6, which represent three different cell types in liver organs. Mechanistically, ZIF-8 entering into the cells can greatly induce the reactive oxygen species generation, which subsequently induces cell cycle delay and autophagy, ultimately leads to enhanced cytotoxicity. Further, human umbilical vein endothelial cells model and zebrafish embryos assay also confirm that PDA can compromise the ZIF-8 toxicity significantly. This study reveals that PDA-coated MOFs nanomaterials show great potential in nano-based drug delivery systems .

13.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589879

RESUMO

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Assuntos
Barreira Hematoencefálica , PPAR delta , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , PPAR delta/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Encéfalo/metabolismo , Jejum
14.
Acta Neuropathol Commun ; 12(1): 56, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589905

RESUMO

In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.


Assuntos
Adenina/análogos & derivados , Antineoplásicos , Doxorrubicina/análogos & derivados , Glioma , Piperidinas , Ratos , Animais , Roedores , Glioma/patologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/patologia , Polietilenoglicóis
15.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584257

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Encéfalo/irrigação sanguínea , Barreira Hematoencefálica/metabolismo
16.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578680

RESUMO

Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Cromatina/metabolismo
17.
Cell J ; 26(3): 212, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628095

RESUMO

In this article published in Cell J, Vol 18, No 2, Jul-Sep (Summer) 2016, on pages 179-188, the authors found that Figure 2A was the same as the one that has already been published and it was confusing. The following figure's legend is corrected in reference 9. The authors would like to apologies for any inconvenience caused.

18.
J Infect Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622836

RESUMO

Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.

19.
Methods Mol Biol ; 2782: 113-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622396

RESUMO

Mitochondria-associated membranes (MAMs) are regions where the endoplasmic reticulum (ER) interacts with mitochondria and regulate lipid trafficking, calcium signaling, ER stress, and inflammation activation. Isolation of MAMs from endothelial cells is vital for studying insight into the immune regulation of many inflammatory diseases. Endothelial cells (ECs) are critical innate immune cells due to their paracrine function of secreting interleukins, chemokines, cytokines, and growth factors, as well as expressing levels of pattern recognition receptors including toll-like receptors (TLRs). Furthermore, ECs regulate and recruit monocytes by expressing adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin, to facilitate monocyte diapedesis in areas of damage and inflammation. This protocol consists of step-by-step instructions on isolating pure MAMs and other subcellular fractions from endothelial cells, which is critical to understanding ER and mitochondria crosstalks in endothelial functions in health and disease.


Assuntos
Células Endoteliais , 60482 , Povidona , Dióxido de Silício , Humanos , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38602102

RESUMO

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...